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Studies in Xenopus laevis suggested that cell-extracellular matrix (ECM) interactions regulate the
development of the left–right axis of asymmetry; however, the identities of ECM components and their
receptors important for this process have remained unknown. We discovered that FN is required for the
establishment of the asymmetric gene expression pattern in early mouse embryos by regulating
morphogenesis of the node, while cellular fates of the nodal cells, canonical Wnt and Shh signaling within
the node were not perturbed by the absence of FN. FN is also required for the expression of Lefty 1/2 and
activation of SMADs 2 and 3 at the floor plate, while cell fate specification of the notochord and the floor plate,
as well as signaling within and between these two embryonic organizing centers remained intact in FN-null
mutants. Furthermore, our experiments indicate that a major cell surface receptor for FN, integrin α5β1, is
also required for the development of the left–right asymmetry, and that this requirement is evolutionarily
conserved in fish and mice. Taken together, our studies demonstrate the requisite role for a structural ECM
protein and its integrin receptor in the development of the left–right axis of asymmetry in vertebrates.
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Introduction

Left–right (L–R) axis determination occurs early during embryonic
development and is critical for establishing the correct body plan in
vertebrates since a number of visceral organs are asymmetrically
located within the body. Asymmetric development of a number of
organs is requisite for their normal function, for instance, the
incidence of congenital heart disease increases from 0.1% observed
in general population to 3–90% in humans with L–R disorders
(Ramsdell, 2005).

In the mouse, the breaking of the symmetrical embryonic body
plan results from the leftward flow generated inside a pit-like
structure on the ventral side of the embryo, called the node, which
forms around embryonic (E) day 7.5 of mouse development. The
leftward flow is generated by the clockwise (if viewed ventrally)
rotation of monocillia protruding from each cell of the node,
facilitating asymmetrical expression of Nodal mRNA at the left rim
of the node, which is essential for the establishment of the
asymmetrical gene expression pattern and subsequent asymmetrical
organ development (Brennan et al., 2002; Nonaka et al., 2002; Oki
et al., 2009).

The node arises from cells at the anterior end of the primitive
streak (PS) (Kinder et al., 2001). Cells of the future node, initially
located underneath the visceral endoderm, move ventrally and
intercalate between the cells of the visceral endoderm, becoming
visible on the embryonic surface as a single field of tiny ciliated cells
by E7.5 (Lee and Anderson, 2008; Lee et al., 2010; Sulik et al., 1994).
By about E7.75, the node appears as an indentation of about 50 μm
deep and is composed of two layers of cells. The ventral-most cell
layer is made of cells with small apical surfaces and a single cilium
protruding from the posterior end of each cell at an acute angle (Lee
and Anderson, 2008; Sulik et al., 1994). Mutations that disrupt
formation of the normal shape of the node, or a functionally similar
structure in teleost fish, called the Kupffer's vesicle, lead to defects in
asymmetric gene expression and disrupt the canonical L–R morpho-
genesis (Amack et al., 2007; Lee and Anderson, 2008; Lee et al., 2010).
The node is thus the key early embryonic structure required for the
establishment of L–R asymmetry in the mouse (Lee and Anderson,
2008; Shiratori and Hamada, 2006).

http://dx.doi.org/10.1016/j.ydbio.2011.03.026
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Seminal studies conducted in the 1990s, suggested that the surface
ectoderm of the early Xenopus laevis gastrula carries essential
information for directing orientation of asymmetrically developing
organs along the L–R axis (Yost, 1992). The surface ectoderm facing
the blastocoel roof in these early embryos assembles fibronectin (FN)
fibrils, and injection of the Arg-Gly-Asp (RGD) but not the Arg-Gly-Glu
(RGE) peptides into the blastocoel cavity led to randomization of L–R
orientation of the heart and the gut with concomitant disruption of FN
matrix assembly on the ectodermal surface. Presumably, these defects
were due to the competition of the exogenously added RGD pep-
tides with cell surface integrins for the binding to the RGDmotif of FN
and/or to RGD motifs within other ECM components, potentially
disrupting cell-ECM interactions. Additional experiments in Xenopus
and in cell culture showed that cell-surface syndecan-2 mediates FN
fibrillogenesis and cell spreading, and is required for L–R asymmetric
development (Klass et al., 2000; Kramer and Yost, 2002; Saoncella
et al., 1999). Recent studies also showed that integrin subunitsαv and
β1d are required for the morphogenesis of the Kupffer's vesicle and
the establishment of L–R asymmetry in fish (Ablooglu et al., 2010).
Taken together, these studies suggest that interactions of cells with
the ECM (and possibly with FN) are important for the development of
the asymmetric body plan in vertebrates. However, the role of the
ECM in L–R development, the identity of ECM component(s), their
cellular receptors, as well as the morphogenetic and molecular
processes they regulate during the development of L–R axis have
remained largely unknown.

FN is an essential component of the extracellular matrix, as mice
lacking FN die between E9.5 and E10.5 with defects that vary in
severity depending on their genetic background (Astrof et al., 2007b;
George et al., 1997). Functions of FN have been analyzed in zebrafish,
frogs and mice using a range of approaches including mutagenesis,
morpholinos and function blocking antibodies (Davidson et al., 2002,
2006; George et al., 1997, 1993; Georges-Labouesse et al., 1996;
Marsden and DeSimone, 2001, 2003; Trinh and Stainier, 2004). The
main conclusions that have emerged from these analyses can be
summarized as follows: 1) major movements of gastrulation giving
rise to the three germ layers, the ectoderm, mesoderm and endoderm,
proceed in the absence of FN (Davidson et al., 2002; George et al.,
1993; Georges-Labouesse et al., 1996; Marsden and DeSimone, 2003;
Trinh and Stainier, 2004); 2) specification of cell fates including axial,
paraxial and lateral mesoderm, differentiation of mesodermal pre-
cursors into somitic or cardiomyocitic lineages takes place in the
absence of FN (George et al., 1997; Georges-Labouesse et al., 1996;
Trinh and Stainier, 2004); 3) the relative positions of lineages and
precursors are comparable between embryos lacking or containing FN
protein (Davidson et al., 2006; George et al., 1997; Georges-Labouesse
et al., 1996; Trinh and Stainier, 2004); and 4) specification and
migration of lineages that arise following gastrulation, such as the
neural crest, do not depend on FN (Mittal et al., 2010). Despite grossly
normal cell fate specification, as well as differentiation and migration
of diverse embryonic lineages, FN mutant fish, mouse and frog
embryos, in which FN protein was depleted using various methods,
show severe defects in the overall embryonic morphogenesis, and in
particular, the formation of somites from somite precursors, the heart
from cardiac precursors and the morphogenesis, of the notochordal
plate into a chord (Davidson et al., 2002, 2006; George et al., 1997;
Georges-Labouesse et al., 1996; Marsden and DeSimone, 2001; Trinh
and Stainier, 2004). Investigations into the underlying causes of these
morphogenetic defects in fish and frog pointed to an integral role of
FN in regulating cell shape, cell-cell adhesion (activation of cadherins)
and cell polarity, as well as in regulating frequency, stability and
directionality of cellular protrusions (such as lamellipodia), directed
cellular movements, orchestrating convergence and extension, epib-
oly, and the coalescence of the bilateral cardiac primordia into a single
heart tube (Davidson et al., 2002, 2006; Marsden and DeSimone,
2001; Trinh and Stainier, 2004). Interestingly, experiments with frog
tissue explants and frog embryos treated with antibodies blocking cell
binding to FN, demonstrated that cell adhesion to FN is required for
the thinning of the blastocoel roof by regulating vertical intercalation
of cells situated some distance away from the substratum, suggesting
that cell polarizing activity of FN can be propagated across cell layers
(Marsden and DeSimone, 2001). These experiments and others also
pointed to an important role of α5β1 integrin in mediating cellular
responses to FN (Davidson et al., 2002, 2006; Julich et al., 2005, 2009;
Marsden and DeSimone, 2001; Takahashi et al., 2007). However, the
role of FN in orchestrating mammalian development is not well
understood.

In the studies presented below, we tested the hypothesis that FN
and one of its major cellular receptors, integrin α5β1, orchestrate the
development of L–R body axis in the mouse. Our data indicate that
during early mouse embryogenesis, FN plays an essential role in the
development of the L–R asymmetry. Initially and primarily, it is
essential for the morphogenesis of the node. In the absence of FN, the
node appears disrupted, narrow and flat, and is composed of multiple
layers of aberrantly oriented cells, instead of two well-organized cell
layers. In a separate set of experiments, we analyzed cell fate
specification of the floor plate and the notochordal plate. We found
that a fairly contiguous, albeit thin, notochordal plate forms in early
FN mutants and that FN was not required for cell fate specification of
the notochordal plate or the floor plate, or for the communication
between these important signaling centers. However, in contrast to
control embryos, Lefty1 and 2 mRNAs were not expressed in the floor
plate of FN-nulls and we found a lack of enrichment in phosphory-
lated, activated forms of SMADs 2 and 3 in the floor plate of FN
mutants. These observations point to a potential second role of FN,
namely, in the establishment and/or maintenance of the midline
barrier function. Finally, we demonstrate that one of themajor cellular
receptors for FN, integrin α5β1, is also required for the development
of L–R asymmetry and that this requirement is conserved in mice and
fish. Taken together, our experiments point to a novel role of the ECM
during the development of the L–R axis of asymmetry.
Materials and methods

Embryo collection

All mouse strains were of 129S4 genetic background. FN-null
mouse embryos were obtained by mating FN-heterozygous (het)
males and females (George et al., 1993). Integrin α5-null embryos
were obtained from crossing integrin α5-het mice (Yang et al., 1993).
The day when the plugs were found was considered E0.5. Embryos
were collected in the earlymorning of E8.5, providingmutants (which
lack somites) and control littermates containing 0–6 somites. Zero-
somite embryos corresponded with the late headfold (LHF) stage of
development (Downs and Davies, 1993). Yolk sacs were genotyped by
PCR, as described (George et al., 1993; Yang et al., 1993). Maternal-
zygotic integrin α5-null embryos were collected from crossing
integrin α5-null adult zebrafish mutants, generated as described
(Julich et al., 2005).
Microarray analysis

Three FN-null embryos from 129S4 strain and four FN-null
embryos from C57BL6/J strain were used. Wild-type embryos (four
from each genetic background) containing 6 somites were used as
controls. mRNA was extracted from each embryo, amplified and
labeled, as described (Astrof et al., 2007b). mRNAs from each
embryonic sample were analyzed as separate biological and exper-
imental replicates. Gene expressionwas assayed using Affymetrix 430
2.0 arrays, as described (Astrof et al., 2007b).
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Whole mount in situ hybridization

Embryos were collected in ice cold phosphate buffered saline (PBS)
and fixed in 4% buffered paraformaldehyde (PFA) for 24 h at 4 °C.
Embryos were then washed twice in PTW (PBS/0.1%Tween-20),
dehydrated in graded series of methanol and stored in 100% methanol
at −20 °C. Whole mount in situ hybridization was performed, as
described http://www.sickkids.ca/research/rossant/protocols/Conlon/
WM2_Henrique.pdf (Henrique et al., 1995). The following plasmids
were obtained for in vitro transcription of anti-sense riboprobes: Nodal
(from Dr. Daniel Constam), Lefty1/2 (from Dr. Hiroshi Hamada), Pitx2c
(from Dr. James Martin), Shh and Ptch1 (originally from Dr. Andrew
McMahon), Brachyury (originally fromDr. Rosa Beddington), FoxA2 and
Bmp4 (from Dr. Brigit Hogan). Stained embryos were photographed
using Zeiss Stemi 2000-C microscope and Leica DFC 420 camera. The
node width was determined by measuring the distance between the
stripes ofNodalmRNAat either side of the nodeusing Image J. Thewidth
wasmeasuredat thewidest part of thenode three times perembryo and
themeasurements were averaged for each embryo. Control andmutant
embryos were kept together in one tube at all stages of staining,
development and photography to avoid variability due to handling.

Scanning electron microscopy

Embryos were dissected either at E7.75 or on the morning of E8.5.
This allowed us to collect embryos ranging from E7.5 to E8.5 in
development, corresponding with the late bud (LB) to the LHF stages
described in (Downs and Davies, 1993). Embryos were fixed in 0.25%
glutaraldehyde in PBS for at least 48 h at 4 °C, dehydrated in graded
series of ethanol and stored in 100% ethanol at −20 °C until use.
Embryoswere critical-point dried andmounted using a sewing needle
onto a double-sided adhesive tape attached to a metal stub. Embryos
were then coated with gold/palladium in a DentonVacuum Desk IV
sputter coater and photographed using Zeiss Field Emission Scanning
Electron Microscope Supra 25.

Whole mount immunofluorescence and confocal microscopy

Embryosweredissected in themorningof E8.5. At this time, control
embryos ranged between 0 somites, correspondingwith the LHF stage
of development, and 6 somites. Embryos were fixed in 4% PFA at 4 °C
overnight (O/N), washed in PBS several times and stored at 4 °C for no
more than 2 weeks. Embryos were blocked in 10% donkey serum in
PBS/0.1% Triton X-100 (PBST) at 4 °C O/N. The following primary
antibodies were used: rabbit polyclonal anti-FN antibody, clone 297.1
(George et al., 1997) at 1:500 dilution, rabbit polyclonal anti-FoxA2
antibody (Abcam, cat # ab40874) at 1:100 dilution. 1 mg/ml
DAPI (Sigma-Aldrich) was diluted 1:1000 and used to stain nuclei
for 1 h at room temp. After the incubationwith primary antibodies O/N
at 4 °C, embryos were extensively washed in 10% donkey serum/PBST,
and incubated with Alexa-488-labeled secondary antibodies (Molec-
ular Probes) in blocking solution O/N and washed again in 10%
donkey serum/PBST. Embryos were mounted onto glass slides using
Prolong Gold antifade reagent (Molecular Probes) and coverslipped.
Images were taken using inverted LSM510 laser scanning confocal
microscope (Zeiss). Z stacks were taken at 0.4–0.5 μm intervals
through the thickness of the entire embryo. 3D reconstructions of
zstacks were done using Imaris (Fig. 2C or Movie 1) or Zeiss LSM
software.

Whole mount immunostaining

Embryos were dissected at E8.5, as above. Following fixation in 4%
PFA at 4 °C O/N, embryoswerewashed in PBS several times and stored
at 4 °C for nomore than2 weeks. Embryoswere blocked in 10%donkey
serum in PBS/0.05% Tween-20 at 4 °C O/N and subsequently incubated
with anti-FN primary rabbit polyclonal antibody at 1:500 dilution O/N
in blocking solution, or with rat monoclonal anti-Itga5 antibody at
1:75 dilution (Pharmingen cat# 553319). Embryos were extensively
washed in blocking solution and incubated with Biotin-SP conjugated
anti-rabbit (or anti-rat) secondary antibodies (Jackson Immunore-
search Laboratories, Inc) in blocking solution O/N. After several
washes, staining was developed using the DAB kit (Vector Laborato-
ries, Inc). Control stainings were performed using normal rabbit or rat
IgG and resulted in minimal background. To detect activated forms of
SMADs 2/3, embryoswerefixed in 4% PFA for 2 h at room temperature,
washed 2 times in PBT (PBS/0.5% Tween-20), dehydrated in graded
series ofMeOH/PBT and stored inmethanol at−20 °C until use. Before
staining, embryoswere rehydrated to PBT, incubatedwithH2O2 for 1 h
in PBS and then blocked in 10% donkey serum in PBT. Embryos were
then incubated with the rabbit polyclonal antibodies raised to
recognize phosphorylated serines 465 and 467 of SMAD 2 and reactive
with active forms of both SMADs 2 and 3 (Cell Signaling Technology,
cat # 3101). Antibodies were diluted in 10% donkey serum /PBT and
incubations were carried out at 4 °C O/N. Embryos were then
extensively washed in blocking solution and incubated with HRP-
conjugated secondary antibody O/N at 4 °C in blocking solution.
Staining was developed using the DAB kit. Control and mutant
embryos were kept together at all times during staining, color
development and photography to avoid differences due to handling.
These experiments were performed at least four independent times.

Results

Fibronectin is required for the development of the left–right embryonic
body axis

In the course of our studies to identify the genetic modifier(s)
modulating the severity of cardiac defects in FN-null embryos isolated
from 129S4 and C57BL6/J strains of mice, we performed a microarray
analysis and found that independent of the genetic background, Nodal
and FoxH1 mRNAs were downregulated in FN-null embryos (n=7)
compared with wild-type controls isolated at E8.5 and containing 6
somites (n=8). Nodal mRNA was downregulated 4.9-fold (adjusted
p=0.02) and FoxH1 mRNA was downregulated 2.4-fold (adjusted
p=0.007) in FN-null embryos compared with controls. Given the
integral role of Nodal and FoxH1 in the establishment of L–R axis of
asymmetry, and the studies performed in the early 1990s showing
randomization of L–R asymmetry in frog embryos injected with RGD
peptides (Yost, 1992), the ostensible deregulation of Nodal and FoxH1
expression in FN-null mouse mutants suggested that FN could be
important for the development of the L–R body plan.

Expression levels and the spatial distribution of Nodal mRNA are
dynamically regulated and vary widely during the course of early
vertebrate embryogenesis (Levin et al., 1995; Shiratori and Hamada,
2006). Since FN-null embryos do not develop somites (George et al.,
1993; Georges-Labouesse et al., 1996), it is challenging to precisely
determine the developmental stage of FN-null embryos, which could
have resulted in the potential deregulation of Nodal levels between
the wild-type and FN-null embryos assayed by microarray analysis.
Since distinctive asymmetric expression of Nodal around the midline
is a general requirement for L–R axis development in all of the
Bilateria (Grande and Patel, 2009), we performed in situ hybridization
(ISH) experiments using FN-null and control embryos to visualize
spatial expression patterns of Nodal and other genes, such as Lefty1,
Lefty2 and Pitx2c known to be asymmetrically expressed (Lee and
Anderson, 2008). During the normal course of embryogenesis, Nodal
mRNA is expressed on both sides of the node. Initially, this expression
is symmetrical, but by about 2-somite stage, the expression of Nodal
mRNA becomes enriched at the left rim of the node and the left side of
the lateral plate mesoderm (LPM) (Yamamoto et al., 2001). We found
that the expression of NodalmRNA around the node was disturbed in

http://www.sickkids.ca/research/rossant/protocols/Conlon/WM2_Henrique.pdf
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Table 1
Nodal mRNA around the node.

L>R L=R L<R R only

Control 7 / 27 11 / 27 1 / 27 0

FN-null 1 / 11 5 / 11 5 / 11 0

Integrin 5-null 8 / 17 3 / 17 4 / 17 2 / 17α

Pink shading represents the presence of hybridization signal. Note that the increased Nodal
mRNA signal on the right side of the node is observed in nearly half of FN-null mutants,
while only 1 out of 27 controls showed a slightly increased Nodal expression on the right
side.
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FN-null embryos (Figs. 1A–E). While in controls we observed either
symmetrical stripes of Nodal mRNA (8/11 embryos) at the left and
right sides of the node, or an enrichment of NodalmRNA at the left rim
of the node (in 3/11 embryos), the expression of NodalmRNA around
the node in FN-nulls was disorganized (Table 1). In 5/11 mutants,
NodalmRNAwas clearly enriched at the right rim of the node (Figs. 1C
and D). In the remainder of FN-nulls, the pattern of NodalmRNA at the
node seemed normal: in 5/11 FN-nulls Nodal mRNA was symmetri-
cally expressed around the node and in 1/11 mutants Nodal mRNA
was enriched at the left rim. However, the two stripes of NodalmRNA
around the node were often distorted in shape (e.g. Supplemental
Fig. 1B). In 2/11 FN-null embryos, the stripes of Nodal mRNA
demarcating the node appeared to be located toward the left (1/11)
or the right (1/11) side of the embryonic midline (Fig. 1D and Sup.
Fig. 1B). We also observed asymmetric position of the node relative to
the embryonic midline by scanning electron microscopy (SEM) in
three out of 13 examined FN-null embryos (Sup. Fig. 1D).

The enrichment of Nodal mRNA on the left side of the node with
respect to the right is essential for the establishment of the
asymmetrical gene expression program around the midline during
mammalian embryogenesis (Nakamura et al., 2006; Oki et al., 2009).
Therefore, deregulation of NodalmRNA expression around the node in
FN-null embryos, suggested that asymmetric pattern of gene
expression of Nodal, Lefty2 and Pitx2c mRNAs in the left LPM may be
disturbed as well. Indeed, our ISH experiments showed that the
expected spatial pattern of Nodal mRNA expression in the LPM was
deregulated in FN-nulls (Figs. 1A–E), Table 2. While in all controls
Fig. 1. FN is required for the asymmetric expression of Nodal, Lefty and Pitx2c. A–E. Expressio
relatively normal expression of Nodal in the left LPM (white arrow) and around the node (bl
present both in the right and left LPM. D. In this FN-null embryo, the node (black arrow) is
Nodal mRNA is enriched on the right side of the node. Ectopic Nodal mRNA is present in the
embryo. All pictures in A–E were taken at the same magnification. F–H. Expression of Lefty1 a
expression of Lefty2 in the LPM. Red arrow points at the midline in control and at the presu
staining in FN-null embryos. I–K. Expression of Pitx2c mRNA in control (I) and FN-null emb
Ventral views are presented in all pictures, A—anterior, P—posterior, R—right and L—left a
magnification. Scale bars are 100 μm.
(n=6),NodalmRNAwas detected only at the left LPM, only in 3 out of
9 FN-null embryos Nodal mRNA was confined to the left side. In 2/9
mutants, Nodal was expressed on both sides of the LPM, in one
embryo it was found only on the right side, and in 3/9 FN-null
embryos, Nodal mRNA was absent from the LPM altogether. The
variability in L–R gene expression observed in our mutants is
characteristic of many published mutants with deregulated left–
right body plan. This variability can be explained by computational
models describing how left–right body plan is established (Nakamura
et al., 2006).

Similarly to Nodal, left-sided expression of Lefty2 and Pitx2c in the
LPM is a characteristic feature of normally developing L–R embryonic
body plan in vertebrates (Lee and Anderson, 2008). While in control
embryos the expression of Lefty2 and Pitx2cmRNAwas confined to the
n of NodalmRNA in control (A) and FN-null (B–E) embryos at approximately E8.25. B. A
ack arrow). C. Expression of NodalmRNA is enriched on the right side of the node and is
positioned to the left of the embryonic midline (red dashed line) and the expression of
anterior right LPM. E. Nodal mRNA is absent in the LPM of this well-developed FN-null
nd Lefty2mRNA in control (F) and FN-null embryos (G–H). Absent (G) and bilateral (H)
med midline in FN-nulls, white arrows point at the LPM. Note the absence of midline
ryos (J–K). Left-restricted (J) and bilateral (K) expression of Pitx2c in FN-null embryos.
xes are indicated at the top of the figure. All pictures in F–K were taken at the same

Unlabelled image


Table 2
Nodal mRNA in the LPM.

Left only Right only Lefty & Right None

Control 19 / 22 0 / 22 0 / 22 0 / 22

FN-null 3 / 9 1 / 9 2 / 9 3 / 9

3 / 17 0 / 17 4 / 17 10 / 17Integrin 5 nullα -

Pink shading represents the presence of hybridization signal.

Table 4
Pitx2c mRNA in the LPM.

Left only Lefty & Right

Control 8/8 0/8
FN-null 1/3 2/3
Integrin α5-null 1/2 1/2

Pink shading represents the presence of hybridization signal.
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left LPM (3 controls were examined in each case), Lefty2 mRNA was
found on either the left (2/7 embryos), the right (1/7), or both sides
(2/7) of the LPM in FN-null embryos or was not expressed in the LPM
at all (2/7) (Figs. 1F–H), Table 3. The expression of Pitx2c in the LPM
was also deregulated in FN-nulls (Figs. 1I–K). Pitx2c was localized to
the left (1/3 embryos) or seen on both sides (2/3 embryos) in the
mutants, Table 4. Notably, we did not detect the expression of Lefty1
or 2 in the midline of 7 examined FN-null embryos (e.g. Figs. 1G and
H).

It is important to note that the Nodal signaling axis is functional in
the LPM of FN-null embryos analyzed. Evidence from prior genetic
studies allowed a general inference that Nodal protein expressed at
the node travels to the LPM where it signals through Nodal receptors,
e.g. ActRIIB, co-receptor, EGF-CFC and transcription factor FoxH1 to
induce the expression of itself, Lefty1, 2 and Pitx2c (Bamford et al.,
2000; Brennan et al., 2002; Marjoram and Wright, 2011; Nakamura
et al., 2006; Norris et al., 2002; Oh and Li, 1997; Oki et al., 2009; Saijoh
et al., 2000; Sakuma et al., 2002; Yan et al., 1999; Yoshioka et al.,
1998). The expression of Nodal, Lefty2 and Pitx2cmRNAs in the LPM of
FN-null embryos suggests that the spread of Nodal from the node to
the LPM as well as Nodal signaling to the LPM does not depend on FN
(Fig. 1). Taken together with prior studies in fish, frogs and mice,
which demonstrated spatially correct specification of various lineages
in mutants lacking FN or depleted of FN protein (Davidson et al., 2002,
2006; George et al., 1997; Georges-Labouesse et al., 1996; Mittal et al.,
2010; Trinh and Stainier, 2004), the spatially deregulated expres-
sion patterns of Nodal, Lefty2 and Pitx2cmRNAs around the midline in
FN-null embryos indicate a specific and requisite role of FN during the
development of the L–R axis of asymmetry.
Fibronectin is enriched at the borders of the node, notochord and the
floor plate

In order to gain insights into the function of FN during the
development of the L–R embryonic body plan, we analyzed
expression of FN mRNA and protein during early mouse embryogen-
esis. FN mRNA is expressed bilaterally at 1-somite stage (Fig. 2A).
When embryos develop 2 somites, FN mRNA becomes expressed in
large cells on either side of the node, and observation of whole
embryos (n=6) suggested that FN mRNA is expressed fairly
symmetrically around the node (Fig. 2B, B1 and data not shown).
The large cells expressing FNmRNA around the node aremost likely to
be of visceral endodermal origin (Fig. 2B1) (Kwon et al., 2008).
able 3
fty2 mRNA in the LPM.

Left only Right only Lefty & Right None

Control 11 / 11 0 0 0

FN-null 2 / 7 1 / 7 2 / 7 2 / 7

1 / 7 3 / 7 3 / 7 0Integrin 5 nullα -

nk shading represents the presence of hybridization signal.
T
Le

Pi
FN protein is enriched at the borders of the node and the
notochord (Fig. 2C–C2) and localizes at the basal surfaces of the
notochordal plate and the ventral node (Fig. 2C3–4). Interestingly,
similar to the enrichment of the Nodal mRNA at the left rim of the
node in 2–3-somite wild-type embryos, we observed an elongated
domain of FN protein expression on the left side of the node,
compared with the right, in 5 out of 6 wild-type embryos with two or
more somites by using either confocal immunofluorescence (IF)
microscopy or immunohistochemistry (IHC) (Fig. 2C1–2, arrows, and
data not shown). We speculate, that this enrichment of FN protein at
the left side is due to a potential enrichment of FN-binding integrins at
the left side of the node compared with the right side. This expression
pattern of FN protein suggested that FN may play specific role(s)
during nodemorphogenesis and the establishment of L–R asymmetry.

We reasoned that enrichment of FN at the borders of the node and
the notochordal plate (Fig. 2C2 and Sup. Movie 1) could be due to the
presence of FN-binding integrins. Integrins are heterodimers of
different alpha and beta chains, with each chain encoded by a distinct
gene. These cell surface proteins function as a major class of ECM
receptors. There are twenty four known integrin heterodimers
(Hynes, 2002), among which integrins α5β1, αvβ1, αvβ3, αvβ8,
α4β1,α4β7,α3β1, andα8β1 bind FN in vitro and signal (van der Flier
and Sonnenberg, 2001). Mouse embryos lacking integrin β1 subunit, a
mutation eliminating 12 known integrin heterodimers, die at peri-
implantation stages of development (Fassler andMeyer, 1995; Hynes,
2002; van der Flier and Sonnenberg, 2001). Individual deletion of
integrinα chains listed above indicated that the phenotype of integrin
α5 mutant mouse embryos is by far most severe, compared with
individual deletion of any other integrin α subunit, and is the most
similar to the phenotype FN-null mutants (Bader et al., 1998; Chan
et al., 2010; Yang et al., 1999), suggesting that integrin α5β1 acts as
the main, although not the only, FN receptor during early embryonic
development.We found that similar to FN, integrinα5 is also enriched
at the borders of the node, and to some degree at the borders of the
notochordal plate (Fig. 7D). Analysis of tissue sections indicated that
integrin α5 localizes to the basal side of the ventral node and
notochordal plate (Fig. 7D1 and data not shown), the surfaces
enriched in FN protein (Fig. 2C3–4), suggesting that integrin α5β1
could facilitate assembly of FN fibrils at these borders. Indeed, we
observed that the absence of integrin α5 leads to defective pattern of
distribution of FN protein around the node and in the LPM (Sup.
Fig. 4). This pattern is suggestive of defective assembly of FN into
higher order fibrils (Davidson et al., 2008; Ohashi et al., 1999).
However, enrichment of FN around the notochordal plate remained
grossly intact in integrinα5-null mutants (Sup. Fig. 4), suggesting that
other (or multiple) FN-binding integrins may be involved in localizing
FN protein to the notochordal borders.
FN is required for the morphogenesis of the node

Since our expression studies indicated that FN mRNA and protein
were enriched at the node (Figs. 2B and C), we reasoned that FN could
be important for the morphogenesis and/or function of this structure.
Formation of the node, nodal cilia, and signaling by growth factors



Fig. 2. Expression of FNmRNA and protein in developing embryos. A–B1. FNmRNA staining. A. FNmRNA is expressed in the LPM in a one somite (s) embryo. Note undetectable levels
of FNmRNA in the embryonic midline in A–B. B. Expression of FNmRNA by cells around the node (no, arrow). Transverse section at the level of the node (arrow) is shown in B1. Note
expression of FN mRNA by the presumptive crown cells (arrow) and endoderm (arrowhead). The section is skewed toward one side creating impression of asymmetric FN mRNA
distribution. C. FN protein staining. 3D reconstruction of confocal sections through the embryo. FN staining in 2–3 somite (s) control embryo shows the domain of FN protein (green)
is extended posteriorly at the left side of the node (red dotted line). Boxed area is expanded in panel C1. Filled arrows point to the extent of FN staining on the left and right sides of
the node. Dashed lines indicate orthogonal confocal slices shown in C3 and C4. C1. Expanded view of the node 3D reconstruction. C2. An optical z slice in xy plane, close to the center
of the embryo (in the dorsal-to-ventral direction). Dashed double-headed arrows outline the region of the node on the right devoid of FN (C1–C2). C3. Orthogonal view through the
notochord. FN (open arrow) is localized between the notochordal plate and the floor plate (fp). C4. Orthogonal view through the node shows that FN protein localizes to the basal
surface of the ventral node (vn, open arrow) between the ventral and the dorsal node, dn. Note that there is a single layer of FN protein at the basal surface of the node and the
notochordal plate (spanning 1–2 confocal planes), while FN protein is present throughout the embryonic mesoderm, spanning the majority of the confocal planes through the
embryo. Therefore, FN protein appears undetectable in the whole mount 3D view in panels C–C1. Scale bars are 100 μm, except in C1–2, scale bars are 50 μm.
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such as Wnt, Shh, BMP4 and Fgf8 are among the key early features
required for the development of the L–R axis in mammals (Caspary
et al., 2007; Fischer et al., 2002; Meyers and Martin, 1999; Mine et al.,
2008; Nakaya et al., 2005; Neugebauer et al., 2009; Tsukui et al.,
1999). Therefore, we used SEM, whole mount in situ hybridization
(ISH) and a TOPGAL reporter strain (DasGupta and Fuchs, 1999) to
Fig. 3. FN is required for the morphogenesis of the node. A–B1. Control embryos. A. Early h
embryos (E8.0, LHF). A–A1. The node (located within the dashed box in A and expanded in A
(C–C1) contain discontinuous nodes, white arrows. By E8.0, control embryos (B–B1) contain
(boxed area) and the notochordal plate (red arrow) in FN-null embryos are narrow (D–D1). T
same in panels A–D, scale bars are 30 μm. Boxes in A–D are expanded in A1–D1, scale bars
examine formation of the node, measure the length of nodal cilia, and
assay growth factor expression and canonical Wnt signaling,
respectively. Using expression of Nodal mRNA to mark the node and
measuring the width of the node at its widest location, indicated that
nodes in FN-null embryos were significantly narrower than in
controls (Sup. Figs. 2A–D). This observation was also confirmed by
ead fold (EHF) stage control embryo. B. E8.0, late head fold stage (LHF). C–D1. FN-null
1) is composed of a nearly contiguous field of cells at E7.5. Some of the FN-null embryos
a stereotypical nodal pit (boxed area) and notochordal plate (red arrow), while the node
he nodes in FN-null embryos remain narrow at E8.5 (not shown). Magnifications are the
are 10 μm. Axes are marked in panel A and are the same for all panels.
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the SEM (Fig. 3). This defect was not due to a potential delay in the
development of FN-nulls, compared with controls, since the width of
the node was constant in groups of control embryos at the LHF stage,
0 somites, to 6 somites (Fig. 3 and Sup. Fig. 2D). Interestingly,
the lengths of nodal cilia were similar in control (n=4 embryos) and
FN-null embryos (n=4) indicating that FN is not required for the
process of ciliogenesis (Sup. Figs. 2E–G). Moreover, since the length of
the nodal cilia is particular to an embryonic stage of development (Lee
and Anderson, 2008), similar lengths of cilia in FN-nulls and controls
suggest that FN-null and control embryos analyzed in our studies
were closely matched in age.

Our ISH analyses of growth factor expression showed that Shh
mRNA is expressed in the nodes of FN-null embryos (Figs. 4C and D,
black arrows) and the expression of Ptch1, an inhibitor and a positive
indicator of Shh signaling (Goodrich et al., 1996), showed that FN is
not required for Shh signaling in the node (Figs. 4E and F, black
arrows). The overall expression patterns of Fgf8 and BMP4 mRNAs
were also not significantly altered in FN-nulls (Sup. Fig. 5). Finally,
we introduced a TOPGAL reporter allele into FN-null background,
and observed the presence of β-gal activity within the narrow nodes
of FN-null embryos, indicating that FN is not necessary for canonical
Fig. 4. FN is not required for the specification of cell fates in the node, notochord and the floo
Bra, Shh, Ptch1, and FoxA2mRNAs, viewed ventrally. A1–H1. Transverse sections approximate
taken anterior to the foregut. A–B. Bra. Note thin notochordal plate in FN-null embryo (B). (C–
(red arrows) of control (C, E, G) and FN-null embryos (D, F, H). C1–H1. Transverse sections s
and the floor plate (white arrow) in control and FN-nulls embryos. Dorsal is at the top and ve
panels A1–H1. Scale bars are 100 μm.
Wnt signaling (data not shown). Taken in context with prior gene
expression studies indicating that all examined embryonic pre-
cursors and lineages are specified in a grossly normal spatio-
temporal pattern in FN-nulls (George et al., 1997; Georges-
Labouesse et al., 1996; Mittal et al., 2010), our results emphasize
that FN is particularly important for the development of the L–R axis
of asymmetry.

Our studies suggested that FN plays an early role during the
establishment of the L–R asymmetry by regulating the shape and
the size of the mouse node. In order to understand why the nodes in
FN-null mouse embryos are narrow, we used antibodies specific for
the transcription factor FoxA2 and confocal fluorescence microscopy
to visualize cells of the node and the notochordal plate (Fig. 5). These
experiments showed the presence of multilayering of FoxA2-positive
cells inside the node (in 6/7 FN-null embryos) and aberrant
orientation of these cells within the nodes in FN-null embryos
(Fig. 5B1), while in control embryos ranging from 0 (LHF stage) to 4
somites (n=10), we have never observed multilayering of cells
within the node (Fig. 5A1), and cells within the nodes of control
embryos exhibited an organized and elongated orientation in all
examined embryos (Fig. 5A1). These observations suggest that FN
r plate. A–H. Whole mount views of embryos stained by in situ hybridization detecting
ly at the levels indicated by the red arrows (except in C, D, the transverse sections were
H) Shh, Ptch1 and FoxA2 are expressed in the node (black arrows) and notochordal plate
how that Shh, Ptch1 and FoxA2 are expressed in both the notochordal plate (arrowhead)
ntral is at the bottom in panels A1–H1. Magnifications are the same in panels A–H and in

image of Fig.�4


Fig. 5. FN is required for the morphogenesis of the two cell-layered structure of the ventral node. 3D reconstruction of confocal sections through the entire thickness of the node of a
control, 3-somite embryo (A) and FN-null (B) embryo stained to detect FoxA2 protein (green) and nuclei (DAPI, blue). A1–B1. Orthogonal transverse confocal views (positions of the
optical planes are shown in A and B, green line, through the nodes of the control and FN-null embryos. The dotted lines in A1–B1 mark the boundary between the ventral and the
dorsal node. Ventral side is up and dorsal side is down in A1–B2. Cells within the node of control embryos are arranged in two layers and adapt elongated morphology (arrowheads).
Cells within FN-null node are aberrantly oriented (arrowheads) relative to the ventral surface of the node and are arranged in multiple layers (B1). A2–B2. Orthogonal lengthwise
confocal sections through the notochordal plate in the anterior (left) to posterior (right) direction, indicated by the double-headed arrow. Dashed lines in A2–B2 mark the border
between the notochord (nt) and the neural ectoderm (ec); or the ventral node (no) and the dorsal node within the bracketed area. Notice the filled node and ectopic FoxA2 staining
in the anterior primitive streak (APS) posterior to the node in FN-null (B2). Green lines in A2–B2 mark posterior borders of the node. Also note that some cells in the notochordal
plate of FN-null embryo are oriented parallel to the ventral surface (arrowheads), while in control (A2), cells of the notochord are oriented perpendicular to the embryo's ventral
surface. Magnification is the same in all panels, scale bar is 25 μm.
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protein localized to the basal surface of the ventral node may be
important for the proper orientation and vertical intercalation of
nodal cells between each other, giving rise to the stereotypical, two-
layered structure of the ventral node and leading to the expansion of
the ventral surface area of the node, similar to the process of radial
intercalation mediating BCR expansion in Xenopus (Marsden and
DeSimone, 2001). Finally, we noticed that node(s) in 3/13 FN-null
embryos were discontinuous, and in 6 out of 13 embryos, the nodes
appeared flat instead of invaginated (Figs. 3C1 and D1), suggesting
that formation of the nodal invagination is genetically controlled and
that FN plays an important role in this process. Taken together, our
data indicate that FN plays an essential early role during the
establishment of the L–R body plan by regulating the morphogenesis
of the contiguous, invaginated, two cell-layered structure of the
mammalian node.

Fibronectin is essential for the formation of the notochordal plate and
the barrier function of the embryonic midline

Establishment and maintenance of the L–R asymmetry in wild-
type mammalian embryos is maintained through the barrier function
of the embryonic midline, the notochordal plate and the prospective
floor plate (Lohr et al., 1998; Meno et al., 1998; Nakamura et al., 2006;
Oki et al., 2009). Using SEM and ISH, we observed that the notochordal
plates were narrower and somewhat disrupted in the mutants
compared with controls (Figs. 3B, D, and 4A–D). Interestingly, our
ISH studies to evaluate the expression of Bra, Shh, Ptch1, and FoxA2
mRNAs indicated that cell fates of notochordal precursors were
specified in the absence of FN (Fig. 4). These findings are consistent
with earlier studies (Georges-Labouesse et al., 1996) and indicate that
while FN is not required for specification of notochordal cell fates or
for Shh signaling, it is important for the notochordal morphogenesis.
These observations suggest that in addition to the defective formation
of the node, the aberrant orientation of the L–R axis could be also due
to defective morphogenesis of the notochordal plate in FN-null
embryos.

Both the establishment and the maintenance of the L–R axis of
asymmetry depends on the expression of Lefty1 in the floor plate (Oki
et al., 2009). Expression of Nodal at the rim of the node induces
expression of Lefty1 in themidline within the node and the expression
of Lefty2 in the left LPM (Meno et al., 2001). Nodal protein produced in
the left LPM can travel to the midline and induce the expression of
Lefty1 (and weakly, Lefty2) on the left side of the floor plate (Kumar
et al., 2008; Marjoram and Wright, 2011; Ohi and Wright, 2007;
Yamamoto et al., 2003). Lefty1 functions as an inhibitor of Nodal
signaling (Sakuma et al., 2002) and its expression on the left side of
the floor plate is thought to inhibit the passage of Nodal activity to the
right LPM and/or to inhibit Nodal signaling at the right LPM (Meno
et al., 1998). While we found that all examined FN-null embryos
expressed Shh, Ptch1 and FoxA2 in the floor plate, we have not
detected floor plate expression of Lefty1/2 in the seven FN-nulls
examined (e.g. Figs. 1G and H). The expression of Shh, Ptch1 and FoxA2
in the floor plate (Fig. 4) is the result of Shh signaling induced in the
floor plate by the Shh protein produced by the notochordal plate
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(Goodrich et al., 1996; Goodrich et al., 1997; Ribes et al., 2010; Tsukui
et al., 1999). Our experiments thus indicate that while FN is not
required for cell fate specification of the floor plate or for Shh signaling
from the notochordal plate to the floor plate, it is essential for the
induction of Lefty1/2 at the midline.

FN protein is localized between the floor plate and the notochordal
plate (Fig. 2C3) and presumably interacts and signals to the cells in its
immediate vicinity. Cell adhesion to FN is known to facilitate growth
factor signaling mediated by receptor tyrosine kinases (Giancotti and
Tarone, 2003; Miyamoto et al., 1996). Since the expression of Lefty1 in
the midline could be induced by Nodal, we reasoned that the absence
of Lefty1/2 expression in the floor plate of FN-null embryos could be
due to defective Nodal signaling at the midline in the absence of FN.
Nodal belongs to the transforming growth factor (TGF) β family of
proteins and signaling by this family of proteins results in phosphor-
ylation of serines at the C-terminal SS(V/M)S motif of SMADs 2 and 3,
activating these SMADs and leading to the formation of SMAD2/3–
SMAD4 complexes. Upon translocation into the nucleus, these
complexes can associate with FoxH1 and mediate gene transcription,
leading to the expression of Lefty1/2 (Massague, 1998; Sakuma et al.,
2002). We noticed that activated forms of SMADs 2 and 3 were
enriched at themidline of wild-type embryos with as few as 2 somites
(Fig. 6, quantified in Sup. Fig. 3), which approximately corresponds
with the time of the earliest induction of Lefty1 at the floor plate (Mine
et al., 2008). Analysis of transverse sections indicated that activated
forms of pSMADs 2 and 3 are indeed enriched in the floor plate
(Fig. 6A1, arrow pointing at the dark brown nuclei and Sup. Fig. 3).
While in all of the control embryos (n=8, ranging from 2 to 7
somites) the expression of activated forms of SMADs 2 and 3 were
enriched at the floor plate, this enrichment was not detected in any of
the FN-null embryos analyzed (n=5) (e.g. Figs. 6B–C1 and quantified
in Sup. Fig. 3). Interestingly, we observed the presence of active forms
of these SMADs elsewhere in FN-null embryos, including the left LPM
(Figs. 6B and C), and similar to controls, we observed enriched
presence of active SMADs 2 and 3 in the left LPM of FN-nulls (Fig. 6B,
Fig. 6. FN is required for the expression of activated forms of SMADs 2 and 3 at the midline. A
Black arrows point at the nodes andwhite arrows point at themidline and indicate the appro
is enriched in the floor plate (white-filled arrows) of control embryo (dark brown nuclei). Not
embryos (B–C1). Dotted brackets in B1 mark neural ectoderm. Magnification is the same in pa
white arrowhead), suggesting that FN is not required to facilitate
Nodal signaling in the LPM in contrast with the floor plate. While we
do not currently understand the basis for this difference, it is known
that asymmetric expression patterns of Lefty1 and Lefty2 are regulated
by distinct genetic elements andmechanisms (Saijoh et al., 1999), and
that Nodal activity gives rise to distinct transcriptional responses in
distinct embryonic locations, e.g. anterior left LPM compared with
posterior left LPM and the floor plate (Meno et al., 2001; Yamamoto
et al., 2001). We also cannot rule out the possibility that higher
threshold levels of Nodal activity are needed to activate SMAD 2/3
signaling in the floor plate compared with the LPM in the absence of
FN. Since cellular fates in the floor plate are specified, our data
suggests a possibility that FN specifically regulates the expression of
Lefty1/2 by regulating Nodal signaling and activation of SMADs 2/3 at
the floor plate.

Conserved requirement for integrin α5 in the development of the L–R
asymmetry

In order to uncovermechanismswhereby FN functions to establish
L–R axis, we asked whether integrin α5 were also essential for the
development of the embryonic L–R axis. To answer this question, we
examined the expression of Nodal, Lefty1, 2 and Pitx2c mRNAs in
integrin α5-null and control embryos, and similar to FN, we found
that the expression of these genes in the LPM was no longer confined
to the left side in integrin α5-null embryos (Figs. 7E–M). Because
integrinα5-null embryos develop further than FN-nulls, we were able
to assess cardiac looping in these mutants. In wild-type embryos, the
heart loops to the right, and this event is the first sign of the
morphological L–R asymmetry in a developing vertebrate embryo
(Shiratori and Hamada, 2006). We found that while in 1/15 examined
integrin α5-null embryos, heart indeed looped to the right, in 5/15
integrin α5-null embryos heart looped to the left. The remaining
mutants contained straight heart tubes situated along the midline
(Figs. 7A–C). These observations indicate that integrin α5 is required
. Control and FN-null embryos (B, C) stained to detect activated forms of SMADs 2 and 3.
ximate levels of transverse sections in A1–C1. The presence of activated pSMADs 2 and 3
ice decreased levels of activated pSMADs 2/3 at the midline and the floor plate of FN-null
nels A–C and A1–C1. All scale bars are 100 μm.
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Fig. 7. Integrinα5 is required for normal cardiac morphogenesis inmice and fish, and the asymmetric expression of Nodal, Lefty and Pitx2c. Normal rightward looping of the heart in a
control embryo (A, right side view), and reversed leftward looping of the heart in an integrin α5-null embryo (B, ventral view), the hearts are visualized by ISH with Nkx2.5 probe,
and the cardiac looping phenotypes are summarized in the table (C). RV—right ventricle. D. Expression of integrin α5 protein (brown) around the node, black arrow and the
notochordal plate, white arrow. Staining with control, rat IgG, resulted only in a faint, non-distinct background (data not shown). Ventral view is shown, axes are as in Fig. 1A. D1.
Transverse section through the node of the embryo (dotted line in D), showing the localization of integrin α5 to the basal surface of embryonic and visceral endoderm, and basal
surface of the ventral node marked by the blue horizontal bracket. Red vertical bracket marks the dorsal node. E–H. NodalmRNA. I–K. Lefty1 and 2mRNA. L, M. Pitx2cmRNA. E–M. All
views are ventral, the axes are as in Fig. 1A. Black arrows point at the nodes, red arrows point at the LPM, open arrows point at the midline in I–K. N. Dorsal views of maternal-zygotic
integrin α5-null zebrafish mutants stained using in situ hybridization to detect MLC2. Axes are marked in panel M1. Examples of a normal leftward displacement of the heart (M1)
and abnormal heart morphogenesis are shown in M2–5. M2. Heart tube is moved to the right. M3. Cardia bifida, in which both heart primordia moved to the right. M4. Cardia bifida
where cardiac primordia are located to the right of the midline. M5. Cardia bifidawhere the cardiac primordia are located to the left of the midline. Magnifications are the same in all
panels. In all control embryos (n=16) a single heart tube was formed and moved to the left by 24 hpf (not shown). Magnifications are the same in A–B, in E–M, and N. All scale bars
are 100 μm, except in D1 the scale bar is 25 μm.
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for the L–R specific gene expression and for the development of the
morphological L–R asymmetry.

To test the hypothesis that the requirement for integrin α5 in the
development of L–R asymmetry is evolutionarily conserved in
vertebrates, we analyzed the position of the heart in maternal-zygotic
integrin α5-null zebrafish (Fig. 7N). By 24 hours post fertilization
(hpf), zebrafish heart jogs to the left, giving rise to the asymmetrically
positioned heart tube relative to themidline (Yelon, 2001). Analysis of
integrin α5-null maternal-zygotic mutants (Julich et al., 2005) using
ISH to detect cardiac myosin light chain 2 (cmlc2) expression,
indicated that in 4 out of 37 mutant embryos hearts moved to the
right. In 11/37 mutants, heart tubes remained positioned along the
midline, and in 22/37 mutants, hearts moved to the left (Fig. 7N),
while in all analyzed control zebrafish embryos (n=16), heart tubes
moved to the left (data not shown). These data indicate an
evolutionarily conserved requirement for integrin α5 during the
development of the L–R body plan in vertebrates and suggest that
some functions of FN during the development of L–R asymmetry are
mediated by integrin α5β1.
Discussion

Our studies demonstrated that FN, an essential component of the
ECM, is necessary for the development of the stereotypical L–R
asymmetric gene expression pattern requisite for asymmetrical organ
morphogenesis. FN protein is expressed around the ventral node and
the notochordal plate, and we observed that nodes of FN-null
embryos were narrow and discontinuous. However, nodal cilia
lengths were comparable between the null and control embryos;
each nodal cell observable by SEM contained one cilium and cilia were
properly positioned at the posterior ends of cells within the node in
the mutants. These observations suggest that FN is not required for
ciliogenesis or to impart anterior–posterior polarity to cells of the
node. Cells within the nodes of FN-null embryos formed multiple
layers of aberrantly oriented cells, while in wild-type embryos the
ventral node is composed of a regular array of cells that are elongated
in a roughly dorsal-to-ventral direction. These observations suggest
that FN is required for the proper orientation of nodal cells within the
node, probably by imparting ventral-to-dorsal (apico-basal) polarity
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to the cells and for the vertical intercalation of nodal cells between
each other to generate the stereotypical, two cell-layered structure of
the nodal pit. While we cannot completely exclude the possibility of
abnormal nodal flow in FN-nulls, we speculate that the initial
requirement for FN during establishment of L–R body plan is in
mediating morphogenesis of the node.

Morphogenesis of the node is a complex process, during which
cells of the future node emerge on the embryonic ventral surface by
intercalating between the visceral endodermal cells covering the
embryo (Lee and Anderson, 2008; Lee et al., 2010; Sulik et al., 1994).
When the ventral surfaces of mammalian embryos at the early head
fold stage are observed by confocal fluorescence microscopy, the node
appears as a stream of connected islands, before it adopts its canonical
tear-drop shape, presumably due to assembly of the islands of nodal
cells into the stereotypical structure of the node (Lee and Anderson,
2008). However, the nodal islands in 3 out of 13 FN-nulls were not
connected to each other, instead, they were separated by large cells of
the visceral endoderm, a morphogenetic defect very similar to that
found in lulu mutants, a null mutation in the gene encoding Epb4.1l5
(Lee et al., 2010; Lee et al., 2007). In addition, the nodes in 6 out of 13
FN-null embryos appeared flat when observed using SEM. These
observations suggest that FN could be important at several stages
during morphogenesis of the ventral node: 1) it could facilitate
intercalation of nodal cells initially located underneath the embryonic
surface with the cells of the visceral endoderm (Lee et al., 2010; Sulik
et al., 1994); 2) facilitate intercalation of nodal cells with each other,
giving rise to the expanded nodal structure, analogous to the role of
FN in radial intercalation of cells of the blastocoel roof during epiboly
in Xenopus (Marsden and DeSimone, 2001); 3) facilitate assembly of
the final shape of the node from populations of nodal cells by
regulating the cohesiveness between the cells of the nascent node.
Indeed, studies in Xenopus indicated that cell–matrix adhesion to FN
regulates cell–cell adhesion and sorting behavior of cells possibly by
regulating the activation state of cadherins (Marsden and DeSimone,
2003); 4) FN may participate in the formation of the invaginated
nodal structure by regulating apico-basal polarity, analogous to the
role of ECM and integrins during formation of vascular lumens (Davis
et al., 2007; Zovein et al., 2010).

FN is a large and complex glycoprotein composed of multiple
domains (Hynes, 1990). While we do not currently understand which
domain or a combination of domains of FN is (are) required for the
establishment of L–R asymmetry, we note that mice lacking both EIIIA
and EIIIB alternatively spliced variants of FN do not develop L–R defects
(Astrof et al., 2007a). To begin understanding the signaling pathways
downstream of FN, we investigated the role of integrin α5 in L–R
morphogenesis and found that it is required for the stereotypical,
asymmetric gene expression in mice and for the proper asymmetric
positioning of the heart in mice and fish, indicating a conserved
requirement for integrin α5 in L–R development in vertebrates.
Interestingly, the phenotype of integrin α5-null L–R defects is not
entirely the same as that of FN-nulls. Similar to FN-nulls, the nodes of
integrin α5-null embryos are flat and in some embryos, contain
aberrantly oriented cells, however the nodes in integrin α5-null
mutants are nearly 40% wider than in controls (pb10−6, Student's t
test) (M.P. and S.A. unpublished, in preparation). The differences in the
phenotypes of FN-null and integrin α5-null embryos could be due to
compensatory or overlapping functions of other FN-binding integrins—
likely mediated by the αv-containing integrin heterodimers, αvβ1,
αvβ3 orαvβ5 (Yang et al., 1999; Yang andHynes, 1996). This is because
the concurrent deletion of integrin αv and α5 genes gives rise to a
phenotype that ismuchmore severe than the individual deletionof each
of these integrins, while the simultaneous deletion of other FN-binding
integrins such as α4 and α5, eliminating three different integrin
heterodimers (α4β1, α4β7 and α5β1), or α3 and α5, gave rise to
mutant embryos with phenotypes resembling α5-nulls. Deletion of α3
and α4 integrins in mice resulted in α4-null like phenotype, which is
both milder and different than the deletion of integrin α5 alone (Yang
et al., 1999; Yang et al., 1995). Interestingly, recent studies in fish
demonstrated that integrins containing αv and/or β1d subunits were
expressed in the dorsal forerunner cells (DFC) andwere required for the
morphogenesis of the Kupffer's vesicle (KV), an organ of asymmetry in
zebrafish (Ablooglu et al., 2010; Essner et al., 2005). In these mutants,
the spherical shape characteristic of the KVwas distorted and instead of
one intact KV, the KV in the mutants was often present in the form of
patches of DFCs. This phenotype is similar to the phenotype of FN-null
embryos, in which patches of nodal cells are sometimes observed on
embryonic surface instead of one contiguous node. Therefore, it is
possible that integrins containing αv and α5 subunits could perform
overlapping or complementary functions during node morphogenesis
in the mouse. Future studies investigating the individual and combined
functions of these integrins during early embryonic developmentwould
provide further insight into the role of cell-matrix adhesion in node
morphogenesis.

Our experiments also demonstrated the requisite role of FN during
morphogenesis of the notochordal plate. While the cell fate of the
notochordal precursors is specified in theabsenceof FN, as judgedby the
expression of Shh, Patched1, Brachyury and FoxA2, this structure
appeared narrow by SEM and seemed interrupted when visualized
using ISH. The narrowness of and discontinuities in the notochordal
plate in FN-nulls could also contribute to the defective L–R axis
development in thesemutants. Interestingly,we found that the function
of the notochordal plate as a signaling center was not significantly
disrupted by the absence of FN. Indeed Shh signaling by the notochordal
plate to itself and to the prospective floor plate was not disturbed as
judgedby theexpressionof genes known tobe inducedbyShh, Patched1
and FoxA2. Similarly, the function of the floor plate as a signaling center
was not disrupted either, since we observed the expression of Shh,
Patched1 and FoxA2 in the ventral cells of the neural ectoderm,
indicating that Shh signaling to and within the floor plate is functional
in the absence of FN. Moreover, we consistently noted amore extensive
expression of Patched1 and FoxA2 mRNAs in the axial structures of FN-
null embryos compared with controls (Figs. 4E1–H1). In addition, the
expression of FoxA2 protein is also more extensive in FN-null embryos
and is no longer confined just to the floor plate of the neural ectoderm
(Figs. 5A2–B2) but spreadsmore dorsally, suggesting an increase in Shh
signaling and spread. Both Patched1 and FoxA2mRNAs in the floor plate
are induced as a response to Shh signaling emanating from the
notochordal plate. We speculate that the presence of FN protein
between the notochordal plate and the ventral surface of the neural
ectoderm (the floor plate) limits diffusion of Shh protein and/or
signaling by Shh from the notochord to the floor plate.

Even though cell fate and signaling functions of the midline were
preserved in FN-null mutants, we did not detect expression of Lefty1
and 2 mRNAs in the floor plate (the probe used in these ISH
experiments detects transcripts of both genes). This was likely due to
the downregulation of Nodal signaling to the floor plate in FN-null
embryos, since the enrichment of activated SMADs 2 and 3 in the floor
platewas undetectable in the absence of FN. There are several possible
reasons for the lower levels of these activated SMADs at themidline of
FN-null mutants, such as potentially lower levels of Nodal activity
reaching the midline or defective signaling by Nodal protein to the
cells of the floor plate in the absence of FN. These possibilities will be
addressed in the future. Taken together, our studies demonstrated the
requisite role of FN and integrinα5 in the development of the L–R axis
of asymmetry.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2011.03.026.
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